MATH 533 Final Examination December 9th, 2008

Student Name:

Student Number:

McGill University
Faculty of Science
FINAL EXAMINATION

MATH 533
Regression and Analysis of Variance
December 9th, 2008
9 a.m. - 12 Noon

Calculators are allowed.

One 8.5" × 11" two-sided sheet of notes is allowed.

All language dictionaries are allowed.

Answer all your questions in the exam booklet provided.
You must do BOTH of the first two questions (Questions 1 and 2) and TWO of the remaining
THREE questions (Questions 3 through 5) . You will receive points from the two questions
with the highest marks from Questions 3, 4, and 5.

Question 6 is worth 10 bonus points. You will not lose points on the exam for any work on this
question, you can only add points for any correct work that you provide.

There are 13 pages to this exam. The total number of marks for the exam is 100, although it
is possible score as high as 110 due to the bonus question.

Examiner: Professor Russell Steele
Associate Examiner: Professor David Stephens
MATH 533 Final Examination December 9th, 2008

Question 1: (30 points)

The data for this analysis concern salary and other characteristics of all faculty in a small Midwestern college collected in the early 1980s for presentation in legal proceedings for which discrimination against women in salary was at issue. All persons in the data hold tenured or tenure track positions; temporary faculty are not included. The data were collected from personnel files and consist of the following quantities:

- **Sex**: 1 for female and 0 for male
- **Rank**: 1 for Assistant Professor, 2 for Associate Professor, and 3 for Full Professor
- **Year**: Number of years in current rank
- **Salary**: Academic year salary in dollars

(a) Test for significance of gender, without controlling for the other variables. Refer clearly to the part(s) of the output that you are using for your tests. Use a significance level of $\alpha = 0.10$ for the test.

(b) Test for a significant of gender after controlling for rank and number of years in current rank. Use a significance level of $\alpha = 0.10$ for the test. Is your answer the same as in part (a)? Explain why or why not.

(c) Interpret the coefficients for **rank** in the model in part (b).

(d) Assess the validity of the model assumptions and the potential for misleading results due to influential points for model (2).

(e) Test whether the association of gender with the response depends on the rank.
Question 2: (20 points)

Suppose that two objects, \(A_1 \) and \(A_2 \) with unknown weights \(\beta_1 \) and \(\beta_2 \) respectively are measured on a balance using the following scheme, all of these actions being repeated twice (i.e. there are six measurements):

- Both objects on the balance (resulting in weights \(Y_{11} \) and \(Y_{12} \))
- Only \(A_1 \) on the balance (resulting in weights \(Y_{21} \) and \(Y_{22} \))
- Only \(A_2 \) on the balance (resulting in weights \(Y_{31} \) and \(Y_{32} \))

Assume that the \(Y_{ij} \)'s are independent, normally distributed random variables with common variance \(\sigma^2 \). Also assume that the balance may not be properly tared, i.e. it may add (or subtract) a fixed amount, \(\beta_0 \), to the true weight each time an object is placed on the scale.

(a) Write down a design matrix, \(X \) that could be used to find least squares estimates for \(\beta = (\beta_0, \beta_1, \beta_2) \) using \(Y = (Y_{11}, Y_{12}, Y_{21}, Y_{22}, Y_{31}, Y_{32}) \). [Hint: Consider the expectation of \(Y_{ij} \) is for each case.]

(b) Describe how you would use the model you have written in part (a) to test the hypothesis that the two objects have the same actual weights.
Question 3: (25 points)

Assume that the true regression model is

\[y = X_1\beta + X_2\gamma + \epsilon, \]

where \(\epsilon \) are independent, but you underfit the model using only the columns of \(X_1 \), i.e. you fit the model:

\[y = X_1\beta^* + \epsilon^*. \]

(a) Find the variance-covariance for \(\hat{\beta}^* \), i.e. the OLS estimates from underspecified model.

(b) Using your answer from part (a), show that the variance for a single \(\hat{\beta}_{j}^* \) from fitting the smaller, underfit model will be smaller than the variance for the same coefficient fitting the true model, i.e. \(\hat{\beta} \). (Hint: re-order the matrix \(X_1 \) so the column corresponding to the \(j \)-th covariate is in the first column and use the result below for finding inverses of symmetric, partitioned matrices. Also, notice that the form of the variance should look very familiar to a common expression from throughout the course.)

If we partition the symmetric \(C \) as:

\[C = \begin{bmatrix} C_{11} & C_{12} \\ C_{12}^t & C_{22} \end{bmatrix} \]

then we can write \(C^{-1} \) as:

\[C^{-1} = \begin{bmatrix} D_{11}^{-1} & D_{12} \\ D_{12}^t & D_{22}^{-1} \end{bmatrix} \]

where

- \(D_{11} = C_{11} - C_{12}C_{22}^{-1}C_{12}^t \)
- \(D_{22} = C_{22} - C_{12}^tC_{11}^{-1}C_{12} \)
- \(D_{12} = -C_{11}^{-1}C_{12}D_{22}^{-1} \)
- \(D_{12}^t = -C_{22}^{-1}C_{12}^tD_{11}^{-1} \)
Question 4: (25 points)
Assume that the model for the data is the standard multiple linear regression model,

\[y = X\beta + \epsilon \]

where \(X \) is \((p \times 1)\), \(y \) is \((n \times 1)\), \(\epsilon \) is \((n \times 1)\), and the \(\epsilon_i \) are independent and identically distributed and \(\epsilon_i \sim N(0, \sigma^2) \).

(a) Write down an expression for what Myers calls the studentized (or internally standardized PRESS) residual for the \(i \)th observation.

(b) Write down an expression for the \(R \)-student (or externally studentized PRESS) residual for the \(i \)th observation and give its distribution under the model hypothesized above (you do not have to derive it if you know it).

(c) First two results from probability:

- If \(U \) has a \(t \)-distribution with \(\nu \) degrees of freedom, then \(\eta = U^2 \) has an \(F \)-distribution with 1 and \(\nu \) degrees of freedom.
- If \(W \) has an \(F \)-distribution with \(m \) and \(n \) degrees of freedom, then

\[\xi = \frac{m}{n}W/(1 + \frac{m}{n}W) \]

has a Beta distribution with parameters \(m/2 \) and \(n/2 \).

Now use these two results to show that the square of the studentized (internally standardized PRESS) residual is proportional to a beta random variable with parameters 1/2 and \((n - p - 2)/2\). (Hint: remember that residual mean square calculated without the \(i \)-th observation can be written as

\[s^2_{-i} = \frac{(n - p)s^2 - e^2_i/(1 - h_{ii})}{n - p - 1} \]

where \(s^2 \) is the residual mean square from the regression using all observations, \(e_i = y_i - \hat{y}_i \), and \(h_{ii} \) is the \(i \)-th diagonal of the hat matrix.)
Question 5: (25 points)

Assume that the model for the data is the standard multiple linear regression model,

\[y = X\beta + \epsilon \]

where the \(\epsilon_i \) are independent and identically distributed and \(\epsilon_i \sim N(0, \sigma^2) \). Let \(H \) be the hat matrix for a regression of \(y \) on \(X \). Let \(X_{(i)} \) be the design matrix with the \(i \)–th row removed and let \(x_i \) be the \(i \)–th row of \(X \).

The following result will be useful in your calculations:

\[
(X^t X)^{-1} = \left(I + \frac{1}{h_{ii}} (X^t X)^{-1} x_i x_i^t \right) (X^t X)^{-1}
\]

(a) Find an expression for \(h_{jk(i)} \), the \((j, k)\)th element of \(H_{(i)} \), the hat matrix for the regression using \(X_{(i)} \) instead of \(X \). In particular, write \(h_{jk(i)} \) in terms of elements of the hat matrix for the whole data set \((H)\). (Hint: Use the result above.)

(b) Assume now that the \(j \)–th row of \(X \) is identical to the \(i \)–th row of \(X \), i.e. that the \(i \)–th and \(j \)–th covariate vectors are identical. Find an expression for the \(j \)–th diagonal element of \(H \) in terms of the diagonal element of \(H_{(i)} \) that corresponds to observation \(j \).

(c) Using your answer to part (b), describe what problems could arise in trying to diagnose the leverage (and thus the influence) of observations \(i \) and \(j \) when they have identical covariate vectors. (Hint: think about what happens to \(h_{jj} \) in \(H \) when \(h_{jj(i)} \) is large. This is called masking of observation influence.)

BONUS: Question 6 (up to 10 extra marks)

Assume that \(y_i \sim \text{Normal}(\mu_i, \sigma^2\mu_i^4) \) where \(\mu_i = \beta_0 + x_i \beta_1 \). Find the variance stabilizing transformation for \(y_i \).
> # Regression output for Question 1
> #
> # Model (1)
>
> model1<-lm(Salary~Sex,data=salary)
> summary(model1)

Coefficients:
(Intercept) 24697 938 26.330 <2e-16 ***
Sex1 -3340 1808 -1.847 0.0706 .

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5782 on 50 degrees of freedom
Multiple R-Squared: 0.0639, Adjusted R-squared: 0.04518
F-statistic: 3.413 on 1 and 50 DF, p-value: 0.0706

> anova(model1)
Analysis of Variance Table

Response: Salary
 Df Sum Sq Mean Sq F value Pr(>F)
Sex 1 114106220 114106220 3.413 0.0706 .
Residuals 50 1671623638 33432473

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
>
> ### Model (2)

```r
model2<-lm(Salary~Sex+Rank+Year,data=salary)
summary(model2)
```

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------|----------|------------|---------|----------|
| (Intercept)| 15906.81 | 797.49 | 19.946 | < 2e-16 *** |
| Sex1 | 524.15 | 834.69 | 0.628 | 0.533 |
| Rank2 | 4373.92 | 906.12 | 4.827 | 1.51e-05 *** |
| Rank3 | 9483.84 | 912.79 | 10.390 | 9.19e-14 *** |
| Year | 390.94 | 75.38 | 5.186 | 4.47e-06 *** |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2418 on 47 degrees of freedom
Multiple R-Squared: 0.8462, Adjusted R-squared: 0.8331
F-statistic: 64.64 on 4 and 47 DF, p-value: < 2.2e-16

```r
anova(model2)
```

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>1</td>
<td>114106220</td>
<td>114106220</td>
<td>19.524</td>
<td>5.819e-05 ***</td>
</tr>
<tr>
<td>Rank</td>
<td>2</td>
<td>1239752324</td>
<td>619876162</td>
<td>106.063</td>
<td>< 2.2e-16 ***</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
<td>157183229</td>
<td>157183229</td>
<td>26.895</td>
<td>4.473e-06 ***</td>
</tr>
<tr>
<td>Residuals</td>
<td>47</td>
<td>274688086</td>
<td>5844427</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

>
MATH 533 Final Examination December 9th, 2008

> ## Model (3)
> model3<-lm(Salary~Rank+Year,data=salary)
> summary(model3)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 16203.27 638.68 25.370 < 2e-16 ***
 Rank2 4262.28 882.89 4.828 1.45e-05 ***
 Rank3 9454.52 905.83 10.437 6.12e-14 ***
 Year 375.70 70.92 5.298 2.90e-06 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2402 on 48 degrees of freedom
Multiple R-Squared: 0.8449, Adjusted R-squared: 0.8352
F-statistic: 87.15 on 3 and 48 DF, p-value: < 2.2e-16

> anova(model3)

Analysis of Variance Table

Response: Salary
 Df Sum Sq Mean Sq F value Pr(>F)
Rank 2 1346783800 673391900 116.692 < 2.2e-16 ***
Year 1 161953324 161953324 28.065 2.905e-06 ***
Residuals 48 276992734 5770682

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

>
> ## Model (4)
> model4<-lm(Salary~Rank*Sex + Year,data=salary)
> summary(model4)

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|----------|
| (Intercept) | 15952.10 | 855.91 | 18.638 | < 2e-16 *** |
| Rank2 | 4383.11 | 1063.99 | 4.119 | 0.000161 *** |
| Rank3 | 8975.97 | 1133.16 | 7.921 | 4.49e-10 *** |
| Sex1 | 244.50 | 1159.16 | 0.211 | 0.833894 |
| Year | 409.90 | 78.21 | 5.241 | 4.10e-06 *** |
| Rank2:Sex1 | -1059.19 | 2188.78 | -0.484 | 0.630791 |
| Rank3:Sex1 | 1582.95 | 1836.99 | 0.862 | 0.393417 |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2432 on 45 degrees of freedom
Multiple R-Squared: 0.8509, Adjusted R-squared: 0.831
F-statistic: 42.8 on 6 and 45 DF, p-value: < 2.2e-16

> anova(model4)
Analysis of Variance Table

Response: Salary

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>2</td>
<td>1346783800</td>
<td>673391900</td>
<td>113.8150</td>
<td><2.2e-16 ***</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>7074743</td>
<td>7074743</td>
<td>1.1958</td>
<td>0.2800</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
<td>157183229</td>
<td>157183229</td>
<td>26.5667</td>
<td>5.494e-06 ***</td>
</tr>
<tr>
<td>Rank:Sex</td>
<td>2</td>
<td>8443427</td>
<td>4221713</td>
<td>0.7135</td>
<td>0.4954</td>
</tr>
<tr>
<td>Residuals</td>
<td>45</td>
<td>266244659</td>
<td>5916548</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Comparisons

```r
> anova(model1, model2)
Analysis of Variance Table

Model 1: Salary ~ Sex
Model 2: Salary ~ Sex + Rank + Year
   Res.Df RSS  Df Sum of Sq     F  Pr(>F)
1     50 1671623638
2     47 274688086  3 1396935552 79.673 < 2.2e-16 ***
---
Signif. codes:  0 ***  0.001 **  0.01 *  0.05 .  0.1  1

> anova(model3, model2)
Analysis of Variance Table

Model 1: Salary ~ Rank + Year
Model 2: Salary ~ Sex + Rank + Year
   Res.Df RSS  Df Sum of Sq    F  Pr(>F)
1     48 276992734
2     47 274688086  1  2304648 0.3943 0.5331

> anova(model1, model3)
Analysis of Variance Table

Model 1: Salary ~ Sex
Model 2: Salary ~ Rank + Year
   Res.Df RSS  Df Sum of Sq   F  Pr(>F)
1     50 1671623638
2     48 276992734  2 1394630904 120.84 < 2.2e-16 ***
---
Signif. codes:  0 ***  0.001 **  0.01 *  0.05 .  0.1  1
```
> anova(model4, model1)
Analysis of Variance Table

Model 1: Salary ~ Rank * Sex + Year
Model 2: Salary ~ Sex

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td></td>
<td>266244659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>-5</td>
<td>-1405378979</td>
<td>47.507</td>
<td><2.2e-16 ***</td>
</tr>
</tbody>
</table>

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> anova(model4, model2)
Analysis of Variance Table

Model 1: Salary ~ Rank * Sex + Year
Model 2: Salary ~ Sex + Rank + Year

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td></td>
<td>266244659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>-2</td>
<td>-8443427</td>
<td>0.7135</td>
<td>0.4954</td>
</tr>
</tbody>
</table>

> anova(model4, model3)
Analysis of Variance Table

Model 1: Salary ~ Rank * Sex + Year
Model 2: Salary ~ Rank + Year

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td></td>
<td>266244659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>-3</td>
<td>-10748075</td>
<td>0.6055</td>
<td>0.6148</td>
</tr>
</tbody>
</table>

> ## Influence measures
> summary(influence.measures(model2))

Potentially influential observations of

lm(formula = Salary ~ Sex + Rank + Year, data = salary):

<table>
<thead>
<tr>
<th>dfb.1_</th>
<th>dfb.Sex1</th>
<th>dfb.Rnk2</th>
<th>dfb.Rnk3</th>
<th>dfb.Year</th>
<th>dffit</th>
<th>cov.r</th>
<th>cook.d</th>
<th>hat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.13</td>
<td>0.05</td>
<td>-0.06</td>
<td>-0.05</td>
<td>0.27</td>
<td>0.31</td>
<td>1.41_*</td>
<td>0.02</td>
</tr>
<tr>
<td>7</td>
<td>-0.01</td>
<td>-0.09</td>
<td>-0.06</td>
<td>-0.15</td>
<td>0.12</td>
<td>-0.21</td>
<td>1.32_*</td>
<td>0.01</td>
</tr>
<tr>
<td>24</td>
<td>-0.61</td>
<td>1.28_*</td>
<td>0.35</td>
<td>0.95</td>
<td>0.03</td>
<td>1.76_*</td>
<td>0.16_*</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Figure 1: Regression diagnostics for Model 2