1. (a) Factor the polynomial $p(z) = z^3 + 1 + i$ as a product of linear factors, using polar form for the roots. Sketch a plot of the roots in the complex plane.

(b) Find the Principal Value of $\log(-1 - i\sqrt{3})$.

(c) Determine whether or not
\[
\lim_{z \to 0} \frac{\overline{z}}{z}
\]
exists and prove your assertion.

2. (a) Define the term Isolated Singularity of a function $f(z)$, and the term $\text{Res}(f(z), a)$ where $z = a$ is an isolated singularity of $f(z)$. Then find the residues of
\[
\frac{z^{1/2}}{z^3 - 4z^2 + 4z}
\]
at all isolated singularities, using the principal value of $z^{1/2}$.

(b) $\frac{z^2}{1 - e^z}$ at all isolated singularities.

3. Let the function f be defined by
\[
f(t) = \frac{\sin 2t}{t}, \quad -\infty < t < \infty, \quad t \neq 0,
\]
and set $f(0) = 2$. Evaluate its Fourier Transform $F(\omega)$ for $-\infty < \omega < \infty$ (except at jump discontinuities of F), using contour integration. Include the detailed analysis of each part of your contour.

4. Given the complex function
\[
F(s) = \frac{e^{-3s}}{s^2 + s + 1}.
\]
(a) Find its Inverse Laplace Transform $f(t)$, $-\infty < t < \infty$, using contour integration. Include diagrams of your contours for the cases $t > 3$ and $t < 3$.

(b) Write down the integral for $F(s)$ in terms of $f(t)$ (the Laplace Transform). Determine the set of all complex numbers s for which this integral converges absolutely, and sketch the set in the s-plane.

5. For the complex function $f(z) = z^{-2}(z - 1)^{-1}(z + 3)^{-1}$,

(a) State the three domains in which a Laurent Series in powers of z is available. Is the series a Taylor series in any of these three cases?

(b) Define Principal Part of a function f near an isolated singularity $z = a$. Determine the Principal Part of the given f near $z = 0$.

(c) Compute the Laurent Series referred to in (a) for the domain containing the point $\sqrt{2} + i\sqrt{2}$.

1
6. (a) For \(f(t) = 1 + 3^t, \ t \geq 0 \), find the Z transform \(F(z) \). Find all singularities of \(F(z) \).
(b) For \(G(z) = z^{-3}(z - 4)^{-1} \), find the inverse Z transform \(g(nT) \), \(n \geq 0 \).
(c) Write down the series for \(G(z) \) in terms of \(g(nT) \) in part (b) (the Z transform).
Determine the set of all complex numbers \(z \) for which the series converges absolutely and sketch this set in the \(z \)-plane.

7. Let \(f(z) = z^3 + z^2 + 3z + 16 \).
(a) Prove that if \(|z| \geq 10 \) then \(f(z) \neq 0 \). Hint: find a lower bound on \(|f(z)| \).
(b) Let \(\gamma \) be the closed contour shown below, consisting of the line segment from 10i to \(-10i \) plus the semicircle of radius 10 in the right half plane, traversed counterclockwise. Given that the image of \(\gamma \) under the mapping \(z \rightarrow f(z) \) is as shown below, how many zeros of \(f(z) \) are on \(\gamma \) ? inside \(\gamma \) ? Explain.
(c) How many zeros of \(f(z) \) are there in the whole right half plane ? in the left half plane ? on the y axis ? (Assume the results in (a) and (b) are correct).
FACULTY OF ENGINEERING

FINAL EXAMINATION

MATHEMATICS 189-381B

COMPLEX VARIABLES AND TRANSFORMS

Examiner: Professor I. Klemes Date: Thursday, April 29, 1999
Associate Examiner: Professor D. Sussman Time: 9:00 A.M. - 12:00 Noon

INSTRUCTIONS

NO CALCULATORS PERMITTED
Show all work and simplify answers.
Answer all 7 questions.
Keep this exam paper.

This exam comprises the cover and 2 pages of questions.